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Summary

Academic Research: Competitive Balance and Coors Air

Charlie Pavitt

The author reviews two recent academic papers — one on the reasons for baseball’s recent steady increase in competitive balance, and
another on the causes of offense increases in Coors Field.

This is one of a series of reviews of sabermetric articles published in academic journals. It is part of a project of mine to collect and
catalog sabermetric research, and I would appreciate learning of and receiving copies of any studies of which I am unaware. Please visit
the Statistical Baseball Research Bibliography at its new location www.udel.edu/communication/pavitt/biblioexplan.htm|. Use it for your

research, and let me know what is missing.

Martin B. Schmidt and David J. Berri, On the
Evolution of Competitive Balance: The Impact
of an Increasing Global Search, Economic
Inquiry, October 2003, Volume 41 Number 4,
pp. 692-704

One implication of the Coase theorem when directed to baseball
is that competitive balance should not change over time as a
consequence of changes in player distribution rules. Yet we
know that competitive balance has improved. So finding that
competitive balance
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the twentieth century. The issue is why. Schmidt and Berri
discuss it in terms of the Coase theorem, a proposal to the effect
that purposive manipulations to a market have no impact,
because the market will work identically either way. Several
economists have applied the idea to baseball, with the
implication that changes in the manner by which players are
distributed among teams that might impact on competitive
balance, such as free agency and the amateur draft, have no long-
term impact on the team on which a player ends up. This is
because under any circumstance a player will end up with the
team that values his services the most, and which therefore is the
most willing to pay the player to sign with them, or compensate
the team owning that player in a trade.

performance among
major league players across the twentieth century (e.g., the
disappearance of the .400 and sub-.200 hitter) is due to the
improvement in the skills of the average player relative to the
best. This is due in turn to the increase in the population from
which major league players were drawn, starting with whites
from the Northeast U.S. and then including in turn whites from
across the U.S., blacks from across the U.S., Hispanics from
more and more countries over time, Asians, and anywhere else
on the globe. As a consequence, a certain skill level that was
adequate in the 1920s would no longer be sufficient in the 1940s,
adequate skill levels in the 1940s would be obsolete in the 1960s,
and so on.
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Although the original hypothesis was geared in terms of the increase in the skill level of the average player, due to displacement of the
relatively poor, this also applies to the average team, because weaker teams have the weakest players as a whole and so would gain the most
advantage from an increase in average skill level. Schmidt and Berri's analysis of MLB data show that the 20th century increase in
competitive balance indeed did mirror increases in the proportion of black and Hispanic players, with this effect drowning out the impact of
changes in the rules for player distribution.

So the Coase theorem appears to be supported. But we know that the Coase theorem cannot account for free agent distribution in baseball.
As I wrote above, the Coase theorem implies that players will end up with the team that is willing to pay the most for them, either directly or
indirectly through purchasing their contract from another team. Yet free agents often sign with teams other than the one that offers them the
most money, because they want to live in a given location or they think they will get more playing time or they think the home ballpark suits
them or any number of other reasons. There are arguments for and against changes in the current rules for player distribution, but the Coase
theorem is not one of them.

Frederick Chambers, Brian Page, and Clyde Zaidins, Atmosphere, Weather, and Baseball: How
Much Farther Do Baseballs Really Fly at Denver's Coors Field?, Professional Geographer, 2003,
Volume 55 Number 4, pp. 491-504

The impact of Coors Field on run production is well known. Robert Adair (The Physics of Baseball) and others have assigned at least part of
the credit for this impact on Denver's high altitude, estimating that its weaker gravity and thinner air allows fly balls to travel about ten
percent farther. However, the authors, all faculty at the University of Colorado's Denver campus, found that mean fly ball distance from

1995 through 1998 (as reported by STATS, Inc.) was only six percent farther at Coors Field (302.8 feet) than the average for other National
League parks (284.5 feet). Why the discrepancy?

During the 1997 season, the authors set up two meteorological stations inside Coors Field, with the Rockies' knowledge and permission, and
made measurements every 15 minutes during games. The authors found fly ball distance to have no relationship with either humidity or
temperature, but a substantial relationship with wind direction; a correlation of -.45 with east winds (which basically come in from right field
toward home plate) and +.49 with west winds (which generally blow out toward right field from home plate). Further, Denver has a
tendency for east winds to dominate during the afternoon and evening when games are in progress. As a consequence, the wind usually
depresses fly ball distances during the game. Of course, when the wind does blow out, the stage is set for some spectacular offense.

Continuing the analysis, the authors computed the average fly ball distance as a percentage of average outfield dimensions for all NL parks,
and found that, given its relatively big dimensions, the functional advantage for Coors Field during those four seasons was only three percent
overall. This was no greater than for Philadelphia, Los Angeles, and Atlanta, and was less than for St. Louis. Thus Mark McGwire's home
run glory years were achieved while "enjoying the advantages of a ballpark that is every bit as conducive to home-run production as Coors
Field in terms of how far the average fly ball carries relative to the average position of the outfield fence" (page 503). But the impact of
Coors Field on home runs remains valid; .044 home runs per at bat between 1995 and 2002 versus an average of .029 for other NL parks.
The authors attribute this impact to other factors, most notably the impact both of thin air on pitch movement (breaking pitches don't break
and all pitches are harder to control) and of low humidity on the ball itself (making the ball not only lighter, but drier and slicker, making the
ball harder for pitchers to grip).

Charlie Pavitt, 812 Carter Road, Rockville, MD, 20852, chazzg@udel.edu| ¢
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Criticism

Leadoff Men in “The New Bill James

Historical Baseball Abstract”
Herm Krabbenhoft

Bill James’ recent Historical Baseball Abstract contained a discussion of the best leadoff men of all time. But, as the author points out,
many leadoff men were omitted from Bill James’ rankings — and many of the players ranked were not leadoff men at all.

In “The New Bill James Historical Baseball Abstract,” James has two separate discussions on the topic of leadoff men.'? My commentary is
being made because of serious historical errors in those discussions.

In the first discussion, James focuses on shortstops as leadoff men:ﬂ

Reese was...how do I say this...the best career leadoff man among the shortstops. Of the top 100 shortstops, almost
exactly one-fourth were essentially leadoff men.

Of the leadoff men, there were three who were probably better leadoff men than Reese, at least in theory. The most
effective leadoff man in the group, actually, was Solly Hemus. Hemus, however, was not really a shortstop, and thus
was always fighting to stay in the lineup, even after he led the National League in runs scored in 1952.

Johnny Pesky was a highly effective leadoff man, more effective than Reese, but lost his best years to World War 11,
and had a short career. Lyn Lary was a terrific leadoff man, led the American League in stolen bases in 1936 and
was a high percentage base stealer, also drew 117 walks in 1936, but he was also in and out of the lineup due to
injuries and marginal defense. Ray Chapman was a quality leadoff man, but...

Among the shortstops who were leadoff men and who had long careers — Bartell, Crosetti, Bancroft, Rizzuto, Donie
Bush, Maury Wills, Campaneris, Aparicio, Patek — Reese was the most effective leadoff man.

I don’t know how or where Mr. James obtained his information to write the above statements. His statements are not consistent with the
actual baseball record. Here are the facts.

Of the 100 shortstops that the author lists (ranked by Win Shares), 10 played exclusively or predominantly in the 19" century. Of the 90 20™
century shortstops, only 15 were principal leadoff batters for five or more seasons, where a “principal leadoff batter” is defined as the player
who leads off the most games for a team in a given season.ﬂ

That is, only 17% of these shortstops can realistically be considered “essentially leadoff men.”
With regard to the statements about Reese, Hemus, Pesky, Lary, and Chapman, here are the facts about their leadoff batter activity:

Reese was a principal leadoff batter for 5 seasons (1940-1942, 1949-1950). In 1940 he was a leadoff batter in 61 of the 84 games he played
(73%). In 1941, he was a leadoff batter in 96 of the 152 games he played (64%). In 1942, he was a leadoff batter in 76 out of the 151 games
he played (50%). In 1949, he was a leadoff batter in 147 out the 155 games he played (95%). And, in 1950, he was a leadoff batter in 85
out of the 141 games he played (60%). Therefore, for his 5 principal leadoff batter seasons, he was a leadoff batter in 465 games out of the
683 games he played (68%). For his entire career (1940-1942, 1946-1958), he batted leadoff in 538 games.

Hemus was a principal leadoff batter for just three seasons (1951-1953). In 1951, he was a leadoff batter in 69 of the 120 games he played
(58%). In 1952, he was a leadoff batter in 132 of the 151 games he played (87%). And, in 1953 he was a leadoff batter in 111 of the 154
games he played (72%). Thus, for these three seasons he was a leadoff batter in 312 of the 425 games he played (73%). For his entire career
(1949-1959), he was utilized as a leadoff batter in 372 games (i.e., just 60 games beyond the 312 during the 1951-1953 period).

! Bill James, “The New Bill James Historical Baseball Abstract,” pp.598, 649-651 (Simon & Schuster, 2003).
2 The leadoff statistics presented in this essay are from the author’s work, “The Encyclopedia of 20" Century Leadoff Batters” (2004).
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Pesky was never a principal leadoff batter. For his entire career (1942, 1946-1954), he was utilized as a leadoff batter in just 25 games — 10
in 1942, three in 1947, one in 1951, nine in 1952 (four with the Red Sox and five with the Tigers), and five in 1953. It is incomprehensible
how Pesky could be classified as “a highly effective leadoff man” when he was hardly ever a leadoff man.

Lary was a principal leadoff batter for four seasons (1935-1938). In 1935, he was a leadoff batter in 93 of the 142 games he played (65%).
In 1936 and 1937, he was a leadoff batter in 100% of the games he played (155 and 156 games, respectively). And in 1938, he was a leadoff
batter in 138 of the 141 games he played (98%). Thus, during his four principal leadoff batter campaigns he was a leadoff batter for a total
of 542 games (91%). For his whole career (1929-1940), he was a leadoff batter in 574 games (i.e., only 32 more than he accumulated during
the 1935-1938 period).

Chapman was never a principal leadoft batter. For his entire career (1912-1920), he was utilized as a leadoff batter in only 44 games — 23 in
1915, three in 1916, and 18 in 1918. It doesn’t make sense to me how Chapman can be called “a quality leadoff man” when he was hardly
ever used as a leadoff batter.

Next, considering “the shortstops who were leadoff men and who had long careers,” the following chart summarizes the principal leadoff
batter careers of these players (listed in alphabetical order).

Principal Leadoff Batter Seasons PLOB Composite Results PLOB Games LOG
Shortstop first last total >75% | OBA OPS TA total % total
Luis Aparicio 1957 1968 11 5 .302 .641 .579 1188 73 1276
Dave Bancroft 1918 1924 4 3 .373 .748 .709 406 87 614
Dick Bartell 1929 1943 5 3 .360 .752 .715 468 71 615
Donie Bush 1912 1919 7 5 .359 .657 .672 840 83 1000
Bert Campaneris 1965 1973 9 9 .306 .659 .626 1196 91 1440
Frankie Crosetti 1934 1943 8 8 .343 .696 .658 895 84 915
Freddie Patek 1971 1975 5 2 .307 .623 .586 529 75 622
Pee Wee Reese 1940 1950 5 1 .358 .715 .721 465 68 538
Phil Rizzuto 1950 1952 2 0 .379 .771 .746 153 50 495
Maury Wills 1961 1971 10 10 .333 .666 .610 1342 90 1502

First, let me explain the column entries.

The first section (Principal Leadoff Batter Seasons) indicates the “first” and “last” years that the player was a principal leadoft batter. The
“total” column gives the total number of principal leadoff batter seasons the player had in his major league career. The “=75%” column
gives the number of PLOB seasons in which the player was the leadoff man in at least 75 % of all the games he played (excluding pinch
hitting assignments) in those seasons.

The next section (PLOB Composite Results) presents three metrics for evaluating batting performance — any batter’s performance, including
leadoff batters. The three metrics are On Base Average (OBA), On Base Plus Slugging Percentage (OPS), and Total Average (TA). There
are, of course, other metrics that can be used to evaluate batting performance — e.g., batting average, slugging percentage, runs created, win
shares, etc. I have chosen OBA, OPS, and TA because they include each of the elements generally deemed crucial for leadoff batter
performance — i.e., getting on base and advancing on the bases so as be in (good) position to be driven home by the hitters in the heart of the
batting order. OBA deals exclusively with getting on base. OPS deals with getting on base and advancing on the bases via extra base hits.
And TA deals with getting on base and advancing on the bases via both extra base hits and stolen bases.

The entries in the OBA, OPS, and TA columns are the composite values for the players during their principal leadoff batter seasons
exclusively. For example, Luis Aparicio played in the majors for 18 years, from 1956 through 1973. He was a principal leadoff batter in 11
of those seasons (1957-1963 and 1965-1968). Thus, his composite OBA, OPS, and TA entries are those calculated by considering just the
1957-1963 and 1965-1968 seasons. However, the player’s pertinent full-season statistics (rather than pure leadoff batter statistics) were used
to calculate the composite values.

In the third section (PLOB Games), the player’s total number of leadoff games during his principal leadoff batter seasons are given along
with the percentage of his principal leadoff batter games compared to all the games he played during his principal leadoff batter seasons. For
example, Dave Bancroft was a principal leadoff batter for 4 seasons (1918 and 1922-1924). In those 4 seasons he was a leadoff batter for
406 games, which is 87% of the 467 total games he played in 1918 and 1922-1924.
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In the last column (LOG), the player’s total number of leadoff games during his entire career is given. For example, Dick Bartell (who was a
principal leadoff batter for a total of 468 games during the 1929, 1934, 1937, 1940, and 1943 seasons) was employed as a leadoff batter in a
total of 615 games in his career (1927-1946).

Upon inspection of the composite OBA, OPS, and TA information presented in this chart, it does not seem clear-cut to me that Reese would

be rated as “the most effective leadoff man” among these players. Among these 10 players, Reese ranked fifth in composite OBA, fourth in
OPS, and second in TA.

Also perplexing is the fact that James did not include Eddie Joost, Don Kessinger, and Rabbit Maranville in his list. As shown in the next
chart, these players were all “shortstops who were leadoff men with long careers.” Furthermore, it seems dubious to me that Reese would be
called “the best career leadoff man among the shortstops” when Joost’s numbers dwarf Reese’s.

Principal Leadoff Batter Seasons PLOB Composite Results PLOB Games LOG
Shortstop first last total >75% | OBA OPS TA total % total
Eddie Joost 1942 1952 6 4 .384 .789 .813 745 89 954
Don Kessinger 1967 1975 8 6 .318 .640 .541 1059 86 1136
Rabbit Maranville 1913 1932 7 3 .321 .653 .595 753 73 897
Pee Wee Reese 1940 1950 5 1 .358 .715 .721 465 68 538

Moving on, now, to the other section in his book dealing with leadoff batters, James writes the following:[l

How do you rate the greatest leadoff men of all time? You can do it however you want, but here’s one way. First, you
can estimate how many runs the player should score by what I call the leadoff man formula, which I have printed
many times [although no references are given] ...take the number of times the player has been on first base, multiply
by .35, his times on second by.55, his times on third by .8, and his home runs by 1. Many players, and most modern
leadoff men, will actually score about the number of runs that the formula says they should score.

One can turn that into a rating of the greatest leadoff men by

1. Converting the Expected Runs Scored into Expected Runs Scored per 27 outs.
2. Contrasting that figure with the league average for runs scored per out during the player’s career.

Obviously imperfect, for many reasons, but still...sometimes it is helpful to take a fresh look at these kind of issues with
new methods even if the new methods are imperfect.

All of the greatest leadoff men ever, by this method, would be guys who aren’t leadoff men, starting with Ted Williams.
(Williams, Ruth, Mantle, Barry Bonds, Ty Cobb, Musial, Joe Jackson, Hornsby, Frank Robinson, and Willie Mays.)
Why Robinson ranks ahead of Mays I don’t know and don’t care, but anyway, this is logical on its own terms: if you

had two Ted Williamses, and could afford to use one of them as a leadoff man, he would be the greatest leadoff man
who ever lived.

What we want, of course, are the greatest leadoff men who were actually leadoff men. That list is:

1. Rickey Henderson 1.67
2. Tim Raines 1.64
3. Topsy Hartsel 1.61
4. Lenny Dykstra 1.59
5. Wade Boggs 1.57

James then proceeds to mention those players who placed 6™ through 20" and then those who ranked 21% through 65"

There should be — and is — no quibble with the “leadoff man formula” approach to ranking “the greatest leadoff men who were actually
leadoff men” (although James applies it to the player’s entire career rather than to just those seasons in which the player was actually
employed as a leadoff batter). There is, however, no justifiable reason for including players who aren 't leadoff men and omitting players
who are bona fide leadoff batters.

3 Bill James, “The New Bill James Historical Baseball Abstract,” pp. 684-685 (Simon & Schuster, 2003).
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The following chart lists all of the players that James included as being among “the greatest leadoff men who were actually leadoff men.”
Also provided is the information (from the 1901-2000 period) relative to their participation as leadoff batters.> While no leadoff batter
performance information is given, the players are listed in the rank-order that James listed them. Players listed in boldface type are those that
had less than 5 principal leadoff batter seasons and/or less than 3 “> 75%” principal leadoff batter seasons.

rank | Player Principal Leadoff Batter Seasons PLOB Games LOG
First Last Total >75% Total % Total
1 Rickey Henderson 1979 2000 22 22 2727 93 2727
2 Tim Raines 1981 1994 12 6 1205 74 1397
3 Topsy Hartsel 1901 1910 10 10 1172 93 1175
4 Lenny Dykstra 1986 1994 9 8 951 87 1095
5 Wade Boggs 1984 1996 7 3 672 64 864
6 Bobby Bonds 1969 1975 7 3 741 69 913
7 Augie Galan 1935 1937 2 2 266 88 384
8 Craig Biggio 1992 1999 5 5 784 98 926
9 Eddie Stanky 1945 1951 6 6 856 98 967
10 Pete Rose 1963 1981 15 13 2049 89 2298
11 Don Buford 1966 1972 6 5 628 76 743
12 Roy Thomas 1901 1909 9 8 1076 95 1092
13 Rod Carew 1981 1983 2 2 168 76 357
14 Stan Hack 1936 1947 11 10 1228 84 1360
15 Elbie Fletcher | ----- | ----- ZERO ZERO ZERO ZERO 7
16 Miller Huggins 1904 1915 11 8 1280 85 1303
17 Lonnie Smith 1982 1990 4 0 312 55 540
18 Bob Bescher 1909 1916 7 5 825 83 885
19 Billy Hamilton 1900
20 John McGraw 1901
21 Eddie Yost 1947 1960 14 13 1690 86 1729
22 Richie Ashburn 1948 1962 11 9 1286 82 1410
23 Lou Brock 1962 1977 14 11 1761 83 1893
24 Davey Lopes 1973 1981 9 9 1129 94 1195
25 Gary Redus 1983 1992 5 2 332 61 591
26 Burt Shotton 1911 1918 8 7 1060 92 1148
27 Ron Hunt 1966 1874 6 4 571 72 620
28 Tommy Harper 1965 1974 9 8 1120 88 1144
29 Dom DiMaggio 1940 1952 8 8 1020 91 1039
30 Johnny Pesky = | ----- | ----- ZERO ZERO ZERO ZERO 25
31 George Burns 1913 1923 10 7 1348 91 1389
32 Paul Molitor 1978 1991 13 13 1525 91 1570
33 Max Bishop 1924 1933 10 10 1107 94 1201
34 Max Carey 1914 1928 8 2 569 53 696
35 Brett Butler 1981 1997 14 13 1706 88 1845
36 Ray Chapman | ----- | ----- ZERO ZERO ZERO ZERO 44
37 Earle Combs 1925 1933 8 7 896 79 1054
38 Pee Wee Reese 1940 1950 5 1 465 68 538
39 Billy North 1974 1980 5 4 587 82 753
40 Brady Anderson 1989 2000 9 6 1084 87 1210
41 Lu Blue 1922 1931 6 6 711 86 913
42 Ron LeFlore 1975 1982 8 8 980 94 1039
43 Jim Gilliam 1953 1960 8 8 1011 85 1025
44 Matty Alou 1966 1970 4 3 479 80 570
45 Donie Bush 1912 1919 7 5 840 83 1000
46 Johnny Temple 1955 1962 8 8 985 94 1050
47 Vince Coleman 1985 1995 11 11 1259 95 1274
48 Mookie Wilson 1981 1990 5 3 462 72 739
49 Bill Werber 1939 1942 4 3 412 83 501
50 Mickey Rivers 1974 1980 6 5 697 86 798
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rank | Player Principal Leadoff Batter Seasons PLOB Games LOG

First Last Total >75% Total % Total
51 Dave Collins 1976 1981 4 3 381 83 665
52 Willie Wilson 1979 1989 11 8 1271 84 1366
53 Billy Bruton 1953 1964 6 4 687 83 820
54 Maury Wills 1961 1971 10 10 1342 90 1502
55 Woodie English 1928 1933 2 1 144 65 310
56 Lloyd Waner 1927 1939 9 7 962 85 1203
57 George Case 1938 1946 9 8 1043 89 1062
58 Red Schoendienst 1945 1958 6 3 607 75 713
59 Phil Rizzuto 1950 1952 2 0 153 50 495
60 Bert Campaneris 1965 1973 9 9 1196 91 1440
61 Luis Aparicio 1957 1968 11 5 1188 73 1276
62 Don Blasingame 1956 1965 9 5 916 77 973
63 Gary Pettis 1984 1990 6 1 519 65 586
64 Otis Nixon 1991 1998 8 8 900 90 1104
65 Dummy Hoy 1902

Examination of the player composition of the chart reveals that three of the players — Billy Hamilton (#19), John McGraw (#20), and
Dummy Hoy (#65) — would be classified as 19" century players; as indicated, they concluded their principal leadoff batter careers in 1900,
1901, and 1902, respectively.

There are 15 players with their names listed in boldface type, indicating that they were not principal leadoff batters for 5 or more seasons
and/or they were not “> 75%” principal leadoff batters for 3 or more seasons. That means that 24% of the 62 twentieth century players in
James’ list should not be classified as “essentially leadoff men.” Included among these 15 players are three players who were never a
principal leadoff batter during their major league careers — Elbie Fletcher, Johnny Pesky, and Ray Chapman.

Fletcher was never a principal leadoff batter during his entire major league career (1934-1949). In fact, he was a leadoff batter in only seven
games during his whole career. Yet, James ranked him as the 15™ greatest leadoff man of all time!

Pesky, as noted above, was never a principal leadoff batter during his entire major league career (1942, 1946-1954). He was employed as a
leadoff batter in a meager 25 games throughout his career. Unbelievably, James ranked him as the 30" greatest leadoff batter of all time!

Chapman, as pointed out above, was never a principal leadoff batter during his entire career (1912-1920). He was utilized as a leadoff batter
in just 44 games in the duration of his career. Incredibly, James ranked him as the 36" greatest leadoff batter ever!

It is extraordinary that Fletcher, Pesky, and Chapman, along with the other 12 players who were not principal leadoff batters for at least 5
seasons or who were not 75% principal leadoff batters for 3 or more seasons, would be ranked by James as being among the 65 players
comprising the “greatest leadoff men” in ML history.

Another incredible aspect of the James list of “the greatest leadoff men who were actually leadoff men” is that several bona fide leadoff men
were omitted. For example — Felipe Alou, Al Bumbry, Max Flack, Harry Hooper, Charlie Jamieson, Eddie Joost, Joe Judge, Chuck
Knoblauch, Harvey Kuenn, Nemo Leibold, Kenny Lofton, Tony Phillips, Willie Randolph, Bip Roberts, Jimmy Slagle, Lou Whitaker, and
Eric Young. Each of these players was a principal leadoff batter for at least five seasons and a 75% principal leadoff batter for at least four
seasons.

In summary, in my opinion, James has done a poor job in discussing leadoff batters — he has (arbitrarily) included players who were not
“essentially leadoff men” and excluded players who truly were “essentially leadoff men.” Without a proper (i.e., complete and accurate)

domain of “essentially leadoff men,” one should not attempt to rate the performances of them.

Considering all of the above, I conclude the leadoff batter discussions that James gives in his book are of questionable value at best.

Herm Krabbenhoft, BOR9343@aol.com| ¢
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Due to an editing error in the August, 2003 issue of BTN, the formula in the footnote on page 6 was not correct.
The correct formula is as follows:

Correction

2
_62.D°

n(n* —1)

The editor apologizes for the error.

Informal Peer Review

The following committee members have volunteered to be contacted by other members for informal peer review of articles.

Please contact any of our volunteers on an as-needed basis - that is, if you want someone to look over your manuscript in
advance, these people are willing. Of course, I'll be doing a bit of that too, but, as much as I'd like to, | don't have time to
contact every contributor with detailed comments on their work. (I will get back to you on more serious issues, like if | don't

understand part of your method or results.)

If you'd like to be added to the list, send your name, e-mail address, and areas of expertise (don't worry if you don't have any - |

certainly don't), and you'll see your name in print next issue.

Expertise in "Statistics" below means "real" statistics, as opposed to baseball statistics - confidence intervals, testing, sampling,

and so on.

Member E-mail Expertise
Jim Box im.box@duke.edu Statistics
Keith Carlson kcarlson2@mindspring.com General

Rob Fabrizzio rfabrizzio@bigfoot.com Statistics
Larry Grasso l.grasso@juno.com Statistics
Tom Hanrahan HanrahanTJ@navair.navy.mil Statistics
John Heer jheer@walterhav.com Proofreading
Dan Heisman danheisman@comcast.net General
Keith Karcher karcherk@earthlink.net Statistics
Chris Leach chrisleach@yahoo.com General
John Matthew IV john.matthew@rogers.com Apostrophes
Nicholas Miceli nsmiceli@yahoo.com Statistics
Duke Rankin RankinD@montevallo.edu Statistics
John Stryker johns@mcfeely.interaccess.com General

Joel Tscherne Joel@tscherne.org General
Dick Unruh runruhjr@dtgnet.com Proofreading
Steve Wang scwang@fas.harvard.edu Statistics

By The Numbers, November, 2003

Page 8




Study

Using Calculus to Relate Runs to Wins: Part |
Ralph Caola

How many extra runs does it take to create an additional win? There are two existing answers to that question: first, the rule of thumb that
ten runs equals one win, and, second, Pete Palmer’s formula based on the teams’ total runs per game. But in this study, the authorgives a
more robust answer — one that applies to teams of differing abilities, and one that is derived mathematically, rather than statistically, from

the Pythagorean Projection formula on which it is based.

Before Sir Isaac Newton went to college at Cambridge, he knew very little formal mathematics, or so the story goes. To begin learning, he
bought a copy of Euclid’s Elements of Geometry. In the time it takes me to program my VCR, he had invented Calculus to help formulate
his monumental Theory of Gravity. Little did Newton know, 300 years later, his Calculus would be applied to a subject as frivolous as
baseball.

Ten Runs Per Win?

Bill James' Pythagorean Theorem predicts winning percentage (W%) as a function of runs scored (Rs) and runs allowed (Ra). The formula
is:

Rs’

W% =——7——
° Rs® + Ra*

or, in terms of wins (W),

Rs’
Rs® + Ra*

(where G is the total number of games played.)

Since the formula expresses wins in terms of runs, I wanted to find out how many runs per win it would predict and compare the result to
Pete Palmer's "10 runs per win" rule of thumb. (See Chapter 4 of The Hidden Game of Baseball, in the section titled “Runs and Wins”.)

This is where calculus comes in. To derive an expression for runs per win, I held Ra constant and took the partial derivative of W with
respect to Rs. This gives the number of incremental wins per run scored. Then, I inverted the result, to get the number of incremental runs
scored per win (Rsi/W). Therefore, the result is the number of runs needed to get one more win. The result of the differentiation is:

dRs (Rs*> + Ra’)’
dw 2GRsRa*

(equation 1)

If Rs and Ra are in runs per game, the factor of G is not needed and

dRs (Rs*> + Ra’)?
dw 2RsRa’

(equation 1a)

Notice what happens when Rs = Ra = 810 runs. 810 runs is 5 runs per game over 162 games.
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(4*810%) / (2%162*810°%)
(4*810) / (2*162)
= 10 runs per win!

dRs/dwW

So James’ formula predicts exactly 10 runs per win when Rs = Ra = 810 runs.

Notice what happens when Rs = Ra =R, in general. Substituting into

dRs 4R 2R

dw 2GR G

dRs

, wWe get:

This also supports the 10 runs per win rule. Again, when teams score 810 runs,

dRs/dW = 2%810/162 = 10 runs per win.

More generally, it also tells us that, for a .500 team (Rs=Ra), the number of incremental runs scored per win is twice the number of runs
scored per team per game. Table 1 illustrates this at selected values of Rs.

So teams need to score 10 extra runs per season to get one extra
win. But, this result is valid only for a .500 team that scores 810
runs (5 runs per game).

Varying Runs Scored and Allowed

The previous results were derived for a team with the same
number of runs scored and allowed — a team with a .500 record.
How many incremental runs scored are needed per win for other
winning percentages?

Though Ra was treated as a constant when calculating the
derivative, it remains a variable, along with Rs, in the resulting
equation. Table 2 shows runs per win for various values of Rs and
Ra. In all tables in which it was appropriate, I shaded all values
within 10% of 10. This shows that 10 runs per win is a good
approximation at many common values of Rs and Ra.

Table 1 — Runs Per Win for a Team with a .500
Winning Percentage (Rs = Ra)

Runs Per Incremental
Rs and Ra Team per Runs per Win
(Runs) Game (Rs/Q@) (Rsi/W)

162 1 2
324 2 4
486 3 6
648 4 8
810 5 10
972 6 12

For seasons from 1901 through 2003, more than 97% of all teams scored and allowed between 3 and 6 runs per game and the average was

4.4 runs per game.

In Table 2, notice the cases in which runs scored and
allowed are within 0.5 run of each other — for example, Ra
=4.5and Rs=5.0, or Ra=4.0 and Rs = 3.5. For those

Table 2 — Runs Per Win given Runs Scored and Runs
Allowed

combinations, incremental runs scored per win are within a Ra
run of the sum of runs scored and runs allowed (Rs + Ra).
Only when runs scored and allowed differ significantly, is

(runs Rs (runs scored/game)

allowed/game) 3.0 3.5 | 4.0 4.5]|5.0[5.5| 6.0

11 13 16 19

incremental runs scored per win very different from Rs +
Ra.

10 11 13 16

9 11 12 14

9 10 11 13

There is a counterintuitive asymmetry in Table 2. For a
team that scores 4 runs per game and allows 3 runs, it takes

9 10 11 12

10 10 11 12

9 runs to produce a win (8.68), while for a team that scores

(oUW lw
ofujo|ul|o|u|o
(o RRNo R0 o ENENEEN N0}
O O 00 JJJ
O © 0 W 0 0 O

10 10 11 12

3 runs per game and allows 4 runs, only 7 runs (6.51) are
required for an extra win.

By The Numbers, November, 2003

Page 10




Why aren’t the (4,3) and (3,4) values from Table 2 equal? To find out, consider an extreme example: Team 1 scores 8 runs per game and
allows only 2 and Team 2 scores 2 runs per game and allows 8. Equation 1a says the incremental runs scored per win for Team 1 is 72 and
the incremental runs scored per win for Team 2 is 18. (The ratio of the two values of the incremental runs scored per win is always the same
as the ratio of runs scored to runs allowed (72/18 = 8/2 = 4)).

Here’s what I think is going on:

The Pythagorean Theorem predicts a 0.941 winning percentage for Team 1 and 0.059 for Team 2. So, Team 1 will win about 152 of 162
games, and Team 2 will win only 10 games.

Team 2, being so bad, is losing a lot of blowouts. That makes its incremental runs per win high compared to the benchmark value of 10 runs
per win. It needs an above average number of extra runs to turn its losses into wins, because its losses are by an unusually large margin.

This is also why, as a team gets worse — as the difference between its runs allowed and runs scored increases — its incremental runs scored
per win also increases. You can see this effect by proceeding down column 1 of Table 2.

But, if being bad makes incremental runs per win high, why is Team 1’s four times higher than Team 2’s? Because Team 1 has so few losses
(10) to turn into wins. For example, if Team 1 scores 10 more runs, 1306 instead of 1296, the runs will probably occur in games they would
have won anyway. So, Team A has to score a lot more runs before any of them happen to come in its rare losses. Even then, it has to score
enough to turn one of those losses into a win.

This is also why, as a team gets better - as the difference between its runs scored and runs allowed increases — its incremental runs scored per
win also increases. You can see this effect by proceeding across row 1 of Table 2.
Winning Percentages

We can also determine runs per win using winning percentages instead of runs per game. Starting with the Pythagorean Theorem and solving
for Ra, we get:

1-W%
W%

Ra = Rs

Substituting this for Ra in equation 1 gives:

dRs 1 YRs 1 .
—_—=| -] — (Equation 2)
dw 2| G | W% -W%)

Equation 2 is now a way to express Runs Per Win by Runs Scored and Winning Percentage. Table 3 shows the results.

Notice, more runs are | Table 3 — Incremental Runs Scored Per Win for Various Values of Runs Scored per
needed as winning Game and Winning Percentage

percentage deviates

from .500. For Rs Winning Percentage

example, 10 more (runs/game) [ .300 | .350 | .400 | .450 | .500 | .550 | .600 | .650 ] .700
runs scored are 3.0 7 7 6 6 6 6 6 7 7
needed at Rs =5 runs 3.5 8 8 7 7 7 7 7 8 8
per game and .500 4.0 10 9 8 8 8 8 8 9 10
winning percentage, 4.5 11 10 9 9 9 9 9 10 11
whereas 12 more are 5.0 12 11 10 10 10 10 10 11 12
needed at .300 or 5.5 13 12 11 11 11 11 11 12 13
.700. Notice also, 6.0 14 13 13 12 12 12 13 13 14
the number of extra

runs needed is
symmetric about a .500 winning percentage.
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For seasons from 1901 through 2003, more than 98% of all teams had winning percentages between .300 and .700.

In Table 3, for winning percentages near 0.500, incremental runs scored per win is twice runs scored (2Rs).

General Exponents

Analysts have tried using exponents other than 2 to make the
Pythagorean Theorem more accurate. (Again, see Chapter 4 of The Table 4: Incremental Runs Scored Per

Hidden Game of Baseball, in the section titled “Runs and Wins”.) The Win For a Team With a.500 Winning
Theorem expressed with a general exponent is: Percentage (Rs = Ra) and Pythagorean
Exponent 1.83)

o Rs™
Wo%=————70—— Runs per Incremental
X X Rs, Ra Team per Runs Per
R R ' p ; ;
§© thRa (Runs) Game (Rs/G) Win (Rsi/G)
. : . L 162 1 2.2
The corresponding expression for incremental runs scored per win is: 324 2 4.4
486 3 6.6
2
dRs (Rs* +Ra") | 648 4 8.7
= 3 (equation 3) 810 5 10.9
dW  (xRs* Ra™) 972 6 13.1

where Rs and Ra are runs per game.

For a .500 team, Rs=Ra=R, and the expression reduces to

dRs 4
bkl »]
dw X
Table 5: Incremental Runs Scored Per Win for Various Values of
where R is runs per game. Runs Scored and Runs Allowed per Game (Exponent 1.83)
Notice, when we use the typical va}lue Ra Rs (runs/game)
for the exponent, x=2, the expression (runs/game) 3.0 EPE 2.0 2.5 5.0 5.5 5.0
reverts to dRs/dW = 2R.
3.0 7 8 9 11 14 16 19
It has been found that using an 3.5 7 8 9 10 12 14 17
exponent of 1.83 makes the 4.0 7 8 9 10 11 13 15
Pythagorean Theorem a bit more 4.5 8 8 9 10 11 12 14
accurate than an exponent of 2. 5.0 8 9 9 10 11 12 13
5.5 9 9 10 10 11 12 13
With x = 1.83, dRs/dW = 2.19*R. 6.0 10 10 10 11 11 12 13

Tables 4, 5, and 6 repeat tables 1, 2,
and 3, but for exponent 1.83 instead
of 2.

Incremental Runs Allowed Per Win

Equation 1 was based on runs scored — but we could have used runs allowed instead. Following the same procedure as before, incremental
runs allowed per win is

dRa _ (Ra’ + Rs*)?
dw 2GRaRs*
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The minus sign means a team must decrease its runs allowed to get an incremental win. Notice that this expression is the same as the one for
incremental runs scored per win (dRs/dW), except that Rs and Ra have exchanged places (and the minus sign). This means the table for
dRa/dW would be the same as Table 2, except the rows and columns would be interchanged. So, if you wanted to find the incremental runs
allowed per win for a team that scores 4 and allows 3 (Rs =4, Ra = 3), you could look in Table 2 in the Rs = 3, Ra = 4 position and take the

negative of that entry.

Differential and Total Runs

In the first part of this article, I analyzed incremental runs scored and allowed per win starting with the Pythagorean Theorem expressed in
terms of runs scored and allowed. I did this because it was the most straightforward approach. However, most formulas for runs per win,

like the “10 run rule,”
are not expressed in

terms of runs scored

and allowed, but as the Table 6: Incremental Runs Scored Per Win for Various Values of Runs Scored

difference between the per Game and Winning Percentage (Exponent 1.83)

two. The ten run rule,

expressed Rs Winning Percentage

mathematically, is (runs/game) | .300 | .350 [ .400 | .450 [ .500 | .550 [ .600 | .650 [ .700
3.0 8 7 7 7 7 7 7 7 8

W = 81 + RA/10 3.5 9 8 8 8 8 8 8 8 9
4.0 10 9 9 9 9 9 9 9 10

where 81 is the 4.5 11 11 10 10 10 10 10 11 11

number of wins needed 5.0 13 12 11 11 11 11 11 12 12

for a .500 record in a 5.5 14 13 12 12 12 12 12 13 14

162 game season and 6.0 15 14 14 13 13 13 14 14 15

where differential runs,
Rd=Rs—Ra.

For example, when Rs

=750 and Ra =700, Rd = 750 — 700 = 50 and the 10 run rule predicts

W = 81+ 50/10 = 81 + 5 = 86 wins.

To calculate the derivative in terms of Rd,
I first had to express the Pythagorean
Theorem in terms of Rd and another
variable instead of in terms of Rs and Ra.
To do this, I transformed the Pythagorean
Theorem from runs scored and allowed to
differential runs (Rd) and total runs (Rt)
using

Rd = Rs - Ra and
Rt Rs + Ra.

Solving for Rs and Ra

Rs (Rt + RdA)/2 and
Ra = (Rt - Rd)/2.

Substituting these expressions into the
Pythagorean equation yields

(Rt + Rd)*
0 —_—
(Rt +Rd)’ +(Rt —Rd )’

0,

Runs and Differential Runs Per Game as Calculated by the
Pythagorean Theorem

Table 7: Winning Percentages for Various Combinations of Total

Rd Rt (runs/game)
(runs/game) 6 | 7 | 8 | 9o | 10 | 11 | 12
=2 .200 .236 .265 .288 .308 .324 .338
=1 .338 .360 .377 .390 .401 .410 .417
0 .500 .500 .500 .500 .500 .500 .500
1 .662 .640 .623 .610 - 589 .590 .583
2 .800 .764 .735 712 .692 .676 .662

(equation 4)
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Rt and Rd can be expressed in runs or runs per game.

Table 7 shows winning percentages calculated using equation 4 at various values of total and differential runs. For seasons from 1901
through 2003, about 80% of all teams had between —1 and +1 differential runs per game. More than 99% of all teams had between 6 and 12
total runs per game and the average was 8.8 runs per game.

In Table 7, notice that winning percentage is symmetric about .500. For example, at Rt =11 and Rd = -1 the winning percentage is .410,
which is .500 - .090. At Rt=11 and Rd = +1, the winning percentage is .590, which is .500 + .090.

To calculate incremental differential runs per win, I took the partial derivative of W% with respect to Rd, using equation 4, and inverted.
The result is

dRd _ (Rt* +Rd*)
dw  Ri(Rt* —Rd*)

(equation 5) Table 8: Incremental Differential Runs Per Win

for Various Values of Differential Runs and Total

Here, Rt and Rd are in runs per game. Runs per Game

Notice, when Rd = 0, the equation simplifies to £ Rt (runs/game)
(runs/game) 6 | 7 | 8 ] 9 J1o 11 ] 12
drRd/dw = Rt*/Rt? 0.0 6 7 8 9 10 11 12
= Rt +/- 0.5 6 7 8 9 10 11 12
= Rs + Ra +/- 1.0 7 7 8 9 10 11 12
+/- 1.5 7 8 9 10 11 12 13
For a team with a .500 record, Rs = Ra =R, Rt = 2R and +/- 2.0 8 & 10 10 11 12 13
dRd/dW = 2R.

When both teams score 5 runs per game, dRd/dW = 2R = 10,
as previously calculated.

So, the incremental differential runs per win is equal to the total runs scored by both teams per game (Rt). This is the same result we got in
the previous analysis when Rs = Ra (Rd = 0). Rd = 0 implies a team with a winning percentage of .500. So, a team with a winning
percentage of .500, in order to get one extra win, needs to increase its difference between runs scored and allowed by the total of it’s runs
scored and allowed per game.

Another thing we can see from equation 5 is that we get the same result whether Rd is positive or negative. That’s because both times Rd
appears, it is squared, and the square of any real number is positive. So, it takes as many runs for a .400 team to get an extra win as it does
for a .600 team. Table 8 shows incremental differential runs per win for various values of differential runs and total runs per game.

Note that the incremental runs per win are equal to total runs per game (Rt) for Rd’s between —1 and +1 run per game. This happens
because, for most practical values of Rt and Rd, Rt is much greater than Rd%.

For example, when Rt=8 and Rd=1,

dRA/AW = (Rt? + RA?)? / [Rt*(Rt? - RA?)]
= (64 + 1)% / [8%(64 - 1)]
= 8.4

If we ignore Rd, we get

dRA/dAW = (8%)% / g*g?
- 4/83

= 8

The difference between 8 and 8.4 is only 5%. For values of Rt greater than 8 or values of Rd less than 1, the difference is even less.
The way I’ve calculated runs per win is different from the way it’s been done in the past. Once again, the ten run rule is:

W = 81 + Rd/10
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Another way of stating it is

RA/ (W - 81) = 10.

This ratio is the average runs required per win above 81. By taking the derivative, I’ve calculated, not the average runs required per win,
but the number of runs required to get the next (marginal) win. The resulting equation indicates the number of incremental runs per win is

not constant, but is a function of the total runs per game (Rt).

In The Hidden Game of Baseball (again Chapter 4, “Runs and Wins” section), Palmer recognized that the number of runs required per win
was not constant and that teams involved in high scoring games needed more runs to produce a win. He arrived at the following equation for

runs per win:

RunsPerWin =10 %

So, when Rt =9, Runs per win = 10.

As shown in Table 9, this formula produces results different from the ones presented here.

Table 9: Comparison of Runs Per Win Predicted by Various Methods as
a Function of Total Runs Per Game
Total Runs Per drd/dw RA=10%*
Game (Rt) (Rd=0) Ten Run Rule Sqgr (Rt/9)

6 6 10 8.1
7 7 10 8.8
8 8 10 9.4
9 9 10 10.0
10 10 10 10.5
11 11 10 11.1
12 12 10 11.5

Summary

Based on James’ Pythagorean Theorem, I derived equations for incremental runs per win. Rather than average runs per win, incremental
runs per win is the number of differential runs a team needs to produce its next win.

The equation for incremental runs scored per win is

dRs (Rs*> + Ra’)’
dw 2GRsRa*

the equation for incremental runs allowed per win is

dRa _ (Ra® + Rs?)?

dw 2GRaRs’

and the equation for incremental differential runs per win is
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drRd (R’ +Rd*)

dw  |Re(Re* - Ra* )|

As the latter equation indicates, incremental differential runs per win is a function of total runs (Rt) and differential runs (Rd). Because, in
most cases, Rt” is significantly greater than Rd®, we can assume, with a good degree of accuracy

dRd
—— =Rt
aw

Although the equations are theoretically different from Palmer’s “ten runs per win” rule, both support Palmer’s rule at many common values
of runs scored and allowed and differential and total runs.

Ralph Caola, [RJCSB25@aol.com| ¢
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Study

\Week-to-Week Consistency Revisited

Charlie Pavitt

Are hitters “streaky” in the sense that a good week of hitting is likely to be followed by another good week? Are they the opposite, where a
good week is more likely to be followed by a bad week? Or is it all just random? Here, the author revisits his 2002 study in search of better
evidence on this question.

How consistent is offensive performance? I asked this question in an earlier essay published in the May 2002 issue of By the Numbers.
Guessing that most of my current readers have that issue stored in their baseball attic, I will only summarize here what I there described in
detail. Evidence from several studies searching for consistency across consecutive at bats (S. Christian Albright, Journal of the American
Statistical Association, 1993, volume 88, pp. 1175-1183), games (Steven Copley, described by Bill James in the 1986 Baseball Abstract),
and five game stretches (1987 Elias Baseball Analyst) has been consistent with the claim that streaks and slumps in offensive performance
are random fluctuations. As Jim Albert stressed in a response to Albright’s work (pp. 1184-1188), the data is also consistent with the claim
that streaks and slumps in offensive performance are real phenomena that coincidentally happen to occur at rates that parallel what would
occur with random fluctuations. Although present-day methods cannot definitively distinguish between these two claims, as long as data
appear random, the former is the simpler and thus more likely explanation.

In order to search for non-randomness in offensive performance, my previous study assembled a data set consisting of 11 years (1991 to
2001) of week-by-week batting and slugging averages, consisting of players who had at least 10 Sunday-through-Saturday weeks in which
they registered 10 or more official at bats over at least 4 seasons. I also included a few Kurt Manwaring/Jeff Reed type catchers who had
several seasons with consistent 7 to 13 at bat weeks. I tended to cut out stretches in which players only played a couple of weeks in a season
before, after, or around injuries.

I will explain the statistical analysis I performed in detail, as it is the basis of the methods used in the present study. It was conducted two
ways; through Wald-Wolfowitz runs tests and regression-based time series analysis. A runs test (my sources were W. J. Conover’s Practical
Nonparametric Statistics, pages 349 to 356, and the second edition of William Hay’s Statistics for the Social Sciences, pp. 775- 777)
provides a z-score that represents the extent to which a sequentially-ordered set of data points includes stretches (“runs”) that are consistently
above or below the median for that data. A positive z-score, or more runs than would occur by chance, would indicate a circumstance in
which good and bad weeks alternated non-randomly (analogous to a pattern of coin flips such as HTHTHTHTHT). A negative z-score, or
fewer runs than would occur by chance, would indicate a circumstance in which long streaks and slumps alternated (analogous to
HHHHHTTTTT). The regression-based time series (my source was Charles W. Ostrom’s Time Series Analysis) provides a regression
equation revealing whether performance improved or worsened across weeks and, more importantly, the Durbin-Watson test, which provides
an index representing consistency of performance above or below the regression line. The index ranges from 0 to 4, such that 2 implies
completely random variation around the regression line, a significantly large index implies more runs than chance allows, and a significant
small index fewer runs than by chance. The time series analysis is more sensitive than the runs test, but technically should be limited to data
sets with no missing values. This data has quite a few missing weeks due to injury and the like. The runs test does not have this limitation.
The runs test also implies that a player’s average performance remains at the median across a season, whereas the Durbin-Watson test can
determine whether there is non-random stretches even within the context of a performance that generally improves or worsens from the
beginning to the end of a season. For this reason, the two often lead to different conclusions for the same season.

I examined the data at the annual level, including only seasons in which a player had 15 weeks for which I had data. In order to control
sample size, I also limited the analysis to players whom I believed were retired. These moves resulted in a total of 549 seasons from 93
players.

The results in a nutshell: The runs tests showed absolutely no tendencies for either consistency or inconsistency. The Durbin-Watson tests
revealed a few more large indices than small, indicating a bit of inconsistency across weeks. One possible explanation for this finding is the
alternation between home stands and road trips, which may approximate one week in length often enough to produce these findings.
Another possibility, of course, is a slight tendency for real inconsistency in performance.

One reason that I limited this study to seasons rather than entire player careers was that the table I had for examining the statistical
significance of Durbin-Watson indices (from Jam Kmenta’s Elements of Econometrics, page 625) was limited to a sample size of 100. In my
earlier essay, I asked the readers for information on how to work with larger sample sizes, and in that cooperative sabermetric spirit, I heard
from both John Goldsmith and Rob Wood (a SABR Salute to both). After sifting through their suggestions, I settled on an approximation
based on the standard normal described in A. C. Harvey’s The Econometric Analysis of Time Series (page 201 of the second edition). Thus
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armed, I performed the analysis the way I originally wanted; using all the weeks of player’s careers for which I had data. This analysis had
an added complexity compared to the seasonal research, because, over the course of years, a batter’s performance usually varies in an
inverted-U pattern; in other words, improvement for a few seasons to a peak and then decline for a few more until retirement. As mentioned
earlier, the use of runs tests presume constancy in a player’s average performance, and, to the extent to which a career approximates an
inverted-U, will be biased toward consistency. The analysis will find the player to be performing below median and thus unusually poorly
for the first and last seasons of his career and above median and so unusually well around the peak. Durbin-Watson indices presume a linear
progression in a player’s average performance, and so could also misrepresent a player’s natural performance trajectory. Also keep in mind
that I was not using complete career data for players active before 1991 and after 2001.

I decided to use data for all (retired or active) players who had, in the 1991-2001 interim, amassed at least 4 seasons totaling 75 10 at-bat
weeks, with at least 10 weeks in each season. I also dropped any season with fewer than 10 weeks from a player’s data, with long-career
platoon catchers again an exception. I ended up with a data set of 297 players (for the sake of trivia, Rafael Palmeiro had the most 10 at-bat
weeks during that stretch, with 275). The statistical methods were identical to the previous study, with one addition; I added a quadratic
term to the regressions in order to look for the expected

inverted-U career progressions.

Data for the runs tests are shown in Table 1. As in the Table 1 — Runs Tests

carlier study, the runs tests for batting average showed no

overall systematic tendencies for either inconsistency or Batting Slugging
consistency. There were no more significant z’s for Average Average
consistency, and fewer significant z’s for inconsistency, than Significance Level .05 | .10 | .05 | .10
expected by chance. The distribution of batting average z’s Number of z's 297 | 297 | 297 | 297
was close to symmetrical, with a mean z of -.02 and a Significant z’s in data 4 8 6 11
median z of 0. The runs tests for slugging average were a indicating inconsistency
bit more complicated. There were as many significant z’s Slgr}lflf:ant z’s in data 8 15 |11 |22
for inconsistency as expected by chance. There were a few 1n 1(.:a1.:1ng SO o N

. s . Significant z’s for each 7.5 | 15 7.5 | 15
more significant z’s for consistency than chance would

by expected by chance

allow, but a second-order test of proportions found in

Hubert M. Blalock Jr.’s Social
Statistics showed that the

preponderance was no greater
than chance for either .05 or .10
significance levels. Nonetheless,
the distribution of slugging
average z’s tended noticeably

Table 2 — Durbin-Watson Indices

Batting Average Slugging Average

) . Significance Level .05 .10 .05 .10
toward consistency, with a mean Number of indices 297 297 297 297
z of -.16 and a median z of -.18. Significant indices 9 32 10 28

The mean z differed significantly

indicating inconsistency

from 0 in a one-sample t test, Significant indices 15 32 23 44
with a probability of occurring indicating consistency
by chance of only .006. Turning Significant indices for 15 30 15 30

to the Durbin-Watson’s, data can

each by expected by chance

be found in Table 2. Indices for

batting average again showed no

tendencies for either

inconsistency or consistency. There were no more significant indices for consistency, and fewer at .05 for inconsistency, than expected by
chance. Once again, the results for slugging average showed more significant indices for consistency than expected by chance, and that
preponderance was significant for both the .05 (z=2.13) and .10 (z=2.71) levels.

I must conclude that both the runs and Durbin-Watson tests show evidence for more consistency in performance than expected by chance for
slugging average, but not for batting average. This is a strange finding, given that batting average makes up a good chunk of slugging
average, and also given that the runs test indices for the two were correlated at +.367, indicating not surprisingly that they went up and down
in tandem. Actually, it is surprising that this correlation is not higher, and I would speculate that whatever factor it is that leads to only a
moderate association between ups and downs in hitting for average and hitting for power might also be implicated in the finding that the
latter is more consistent than the former.

Data for the regressions themselves are displayed in Table 3. Beginning with the linear component, there were fewer significant regressions
than expected by chance indicating either improvement or decline across seasons for batting averages and indicating decline across seasons
for slugging average. In contrast, there were quite a few more significant linear regression coefficients indicating improvement in slugging
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average than chance would allow. In other words, more than a random number of players increased their power, but not their batting
average, as their careers progressed. Turning to the quadratic component, both batting and slugging averages boasted a far greater number of
inverted-U patterns than by chance, indicating the expected career trajectory of peak performance somewhere in the middle of a career.

There were fewer U-shaped trajectories than would be expected by chance, and many of these were artifacts resulting from players having
uncharacteristically productive 2001 seasons, skewing the last available data points upward (e.g., Rich Aurilia).

Now we need to address the bias toward consistency mentioned earlier. Given that there were a disproportionate number of inverted-U
patterns, and a disproportionate amount of consistency, for slugging average across careers, then we run into the problem that both the runs

and the Durbin-Watson tests
might have picked up the
relatively poor early and late
years as unusually consistent
stretches of poor performance
and the relatively productive
middle years as an unusually
consistent stretch of good
performance. The same
implication follows from U-
shaped patterns, except that here
the beginning and end of careers
would appear to be unusually
good and the middle unusually
poor. If so, the findings for
nonrandom consistency would
be a methodological artifact.
There is evidence suggesting that
this may be the case. Of the 69
careers with an inverted-U
pattern significant at .10, 18

Table 3 — Overall Performance Change
Batting Slugging
Average Average
Significance Level .05 .10 .05 .10
Number of regressions 297 297 297 297
Significant linear regressions 17 24 34 50
indicating improvement
Significant linear regressions 12 20 7 16
indicating decline
Significant curvilinear regressions 11 15 12 15
indicating U-shaped relationship
Significant curvilinear regressions 33 52 50 69
inverted-U relationship
Significant regressions for each by 15 30 15 30
expected by chance

(26.1 percent) were more consistent than chance. Of the 15 careers with a U-shaped pattern significant at .10, there were 4 (26.7 percent)
that were more consistent than chance. In contrast, of the 213 careers with no curvilinear pattern significant at .10, only 22 (10.3 percent)
were more consistent than chance, which is exactly the amount one would expect given random processes. A chi-square test of the entire
data sets matching quadratic components with Durbin-Watson indices found a significant relationship between the two with a probability of
.013 of occurring by chance. Thus, I must conclude that there is no good evidence for consistency across weeks that cannot be interpreted
independently of the ups and downs across seasons in normal career patterns.

In conclusion, there is no evidence in this data that batters are less consistent than chance would allow in their week-to-week performance
across multiple seasons. Although there is evidence that batters are more consistent than would be expected by chance across weeks, it is
highly possible that this evidence is an artifact of the tendency for many batters to have non-linear, usually inverted-U-shaped career
trajectories. Consistently with all previous research in this area of which I am aware, there is no reason to believe from this data that changes
in offensive performance across weeks, independently of normal career patterns, are anything more than random fluctuations.

Charlie Pavitt, 812 Carter Road, Rockville, MD, 20852, thazzg@udel.edu| ¢
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Study

Quantifying Persistence in Run Model Errors

Across Team-Seasons
Ted Turocy

1t has been noted that teams that beat their runs scored estimates (of statistics such as Runs Created) have no increased probability of
repeating that feat the next season. This implies that the statistics capture all important persistent factors that go into runs scoring —
otherwise, a tendency to repeat would exist. But the issue has not been studied in full — and it is still possible that there are some small
persistent characteristics, such as team speed, that would lead to a small but significant chance of a repeat in outperforming or
underperforming an estimate in subsequent seasons. Here, the author checks if that is indeed the case.

The baseball analysis community has estimated many different specifications for “production functions” for runs scored, both linear and
nonlinear, over the last few decades. In general, it has been observed that teams that overperform or underperform relative to their predicted
run production in a season will tend to regress to the mean in the following season. This suggests that there are generally no important team-
specific features which persist from season to season that are not captured as inputs into these functions. This note seeks to quantitatively
verify this folk wisdom in the context of specifications estimated by linear regression.

I use team-season-level data from 1974 through 1992, inclusive, and denominate all quantities in per-game-played terms. I investigate two
specifications. The first specification is a basic linear estimator, where the vector of regressors is (1B,2B,3B,HR,BB,HP). The second
specification is an extended specification designed in Turocy (2003) to correctly account for team speed in the estimation; the estimated
specification is called Model 4 in that paper. Essentially, this specification adds data on stolen bases and caught stealing (separated by
attempts of second base and third base), grounded into double plays, and advancement on errors.

The ordinary least squares fit of the basic model to team offensive data gives a standard error of .1484 runs per game, and an autocorrelation
of the residuals of .1204. There are 488 team-seasons in the sample; simulation of a like number of independent normal random variables
with standard deviation .1484 resulted in an empirical autocorrelation of the residuals greater than .1204 in only 4 out of 1000 simulations,
implying that the autocorrelation is significant. The full model fit to the offensive data drops the standard error to .1382, and gives residuals
with an autocorrelation of .0598; in 1000 simulations, the autocorrelation exceeded .0598 83 times, putting this autocorrelation near the
boundary of significance at the standard levels.

The difference between the specifications is the inclusion of factors related to speed in the full model. To see if this is in fact what is being
controlled, the same specifications are estimated using data for teams on defense. In this case, the basic specification results in a standard
error of .1499 with an autocorrelation of .0932 (simulated p-value .027) and the full specification a standard error of .1445 (simulated p-
value .067). Inclusion of the additional regressors does not reduce the standard error and observed autocorrelation of residuals as much as
when using offensive data, suggesting that these additional regressors are in fact picking up primarily differences in speed.

To correctly account for this autocorrelation, I assume that the error term in the regression, instead of being uncorrelated, follows a first-
order autoregressive process given by €,=pg, ;. tu,, where u,; is independent across teams and seasons (where i indexes teams and ¢ indexes
time). The value of p is estimated by the Cochrane-Orcutt procedure, which chooses p such that the sum of squares of residuals of the
corresponding ordinary-least-squares estimators is minimized. The resulting estimates of p closely correspond to the autocorrelations
observed above.

Specification Estimated p
Basic, offense .124
Full, offense .063
Basic, defense .096
Full, defense .076

Importantly, however, the coefficient estimates obtained from the regression model augmented with autocorrelated errors do not differ in any
significant fashion from those in the regressions ignoring the autocorrelation. Therefore, neglecting the autocorrelation in estimating the
parameters of these type of models is likely not a problem.
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Even though the autocorrelation does appear to be statistically significant, it is not substantial in magnitude. The autocorrelation of about .12
in the basic offense model implies that a team that outperforms the model's prediction by 30 runs in a season would expect, on average, to
outperform the model's prediction by only about 4 runs the following campaign.

An interesting question is whether adding further factors to the model could further reduce the autocorrelation. Some candidates for sources
of the autocorrelation of the residuals include strategy and managing styles, and team composition (balanced versus unbalanced lineups, for
example). Also, note that while this estimates a linear approximation to the production of runs, the true function is nonlinear, but with a
modest curvature. This alone could account for the autocorrelation, since teams that score many runs in one season are likely to do so in the
next as well (the autocorrelation of runs per game in the sample is .42).
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